Circuit compensates system offset of a load-cell-based balance

Luca Bruno, ITIS Hensemerger, Monza, Italy

It’s a challenge to interface a resistive bridge sensor with an ADC receiving its power from a 5V single-supply power source. Some applications require output-voltage swings from 0V to a full-scale voltage, such as 4.096V, with excellent accuracy. With most single-supply instrumentation amplifiers, problems arise when the output signal approaches 0V, near the lower output-swing limit of a single-supply instrumentation amp. A good single-supply instrumentation amp may swing close to single-supply ground but does not reach ground even if it has a true rail-to-rail output.

In this application, the sensor is a precision load cell with a nominal load of 5 kg, or about 11 lbs, to weigh objects on an aluminum pan weighing approximately 150g, or approximately 5 oz. Because of the pan’s weight, the instrumentation amplifier’s output signal can never go down to 0V, even if there are no objects to weigh. Now, the problem arises of how to compensate the instrumentation amp’s output-offset voltage and the voltage that the pan itself produces.

A software approach is the simplest way to compensate the system offset. During power-up, there are no objects to weigh on the pan, and the system can thus acquire the offset voltage and hold the data in the microcontroller’s memory, subsequently subtracting it from the data it acquired when there was an object to weigh. This approach, however, does not reach the 5-kg full-scale of the balance, reaching only 5−0.15 kg, or 4.85 kg.

This Design Idea shows how to achieve hardware compensation us-

Figure 1 The serial dual DAC in this circuit gets an offset voltage from the microprocessor (not shown) during a power-on-calibration routine.
ing a microcontroller that, on power-up, starts a software routine to reset the system offset. The solution is a simple circuit based on four ICs from Linear Technology (www.linear.com) in Figure 1. A precision voltage reference, IC1, has a high minimum output current of 50 mA. It provides an output voltage of 4.096 V to power the load cell and to set the full-scale of the 12-bit ADC, IC4. The highly accurate LT1789-1 instrumentation amplifier, IC2, features maximum input-offset voltage of 150 μV over the temperature range of 0 to 70°C and maximum input-drift-offset voltage of 0.5 μV/°C over the temperature range of 0 to 70°C with rail-to-rail output that swings within 110 mV of ground. You set the gain through precision resistor R1 to a nominal value of 500Ω to give an output span of 4.096 V when the load is 5 kg and its maximum input signal is \(V_{\text{IN}} = 4.096 \times 2 \text{ mV/V} = 8.192 \text{ mV} \), where S is the sensor’s sensitivity.

The output of DAC_A of dual-DAC IC3 provides a reference voltage of 200 mV at the reference pin of the instrumentation amp to avoid saturation near ground of the amplifier itself, where its transfer characteristic is not quite linear. The amplifier’s total worst-case output offset is \(V_{\text{OFFSET}} = 200 \text{ mV} + 125 \text{ mV} + 500 \times 150 \mu \text{V} = 325 \text{ mV} \pm 75 \text{ mV} = 250 \text{ mV}/400 \text{ mV} \), where \(V_{\text{PAN}} = 125 \text{ mV} \) and is the voltage that the pan’s weight produces.

The system-output offset is thus 250 to 400 mV. On power-up, the microcontroller starts a routine that sets the output of the DAC_A equal to 200 mV, while it increases the output of the DAC_B of dual-DAC IC4 until it is equal to the system offset on Pin 2 of ADC IC3, and the result of the conversion is 000h. This result is possible because IC2 contains two 12-bit DACs with the same full-scale voltage of 2.5 V, making 1 LSB equal to 0.61 mV, which is smaller than IC3’s resolution of 1 mV. This figure corresponds to the resolution of the balance: 5000g/4096 = 1.22g. The maximum output voltage of the instrumentation amp with a maximum load of 5 kg is 4.096 V + \(V_{\text{OUT,TOTAL,INJ}} = 4.346 \text{ V} \), which is less than the minimum worst case over temperature of 4.62V high saturation.

IC3 has a single unipolar differential input, so you can subtract from the +1N input voltage a constant voltage of value equal to the system offset that that DAC_B of IC4 provides. During the first one and a half clock cycles, the ADC samples and holds the positive input. At the end of this phase, or acquisition time, the input capacitor switches to the negative input, and the conversion starts. The RC-input filters on the inputs of IC3 have a time constant of 0.5 µsec to permit the negative and positive input voltages to settle to a 12-bit accuracy during the first clock cycle of the conversion time, using the maximum clock frequency, which is 200 kHz. If you want to increase the time constant, then you must use a lower clock frequency.

Furthermore, the DAC and ADC have a three-wire serial interface that easily permits transferring data to a wide range of microcontrollers with a maximum sampling rate of 12.5k samples/sec. When the ADC performs no conversions, it automatically powers down to 1 nA of supply current, and, if the microcontroller shuts down IC3 through its Pin 3, the circuit draws a worst-case supply current of just 1 mA, because all the ICs are micropower.

Voltage doubler uses inherent features of push-pull dc/dc converter

Ajoy Raman, Aeronautical Development Establishment, Bangalore, India

This Design Idea presents a minimal-parts-count, wide-range voltage doubler using the inherent voltage-doubling characteristics of a one-transformer push-pull dc/dc converter. The implementation uses a high-voltage Darlington-array driver, ULN2023A. The circuit exhibits a wide input-voltage range of 5 to 30 V and provides a typical power output of 1 to 4 W at moderate efficiency.

Figure 1 shows a simple, one-transformer dc/dc converter in which cross-coupled RC networks from the collectors of Q1 and Q2 to the corresponding bases provide regenerative feedback. In operation, the transformer alternates between positive and negative saturation, with collapse in transformer flux leading induced voltages to drive the transistors alternately off and on. The input-voltage and saturation charac-

Figure 1 A simple one-transformer dc/dc voltage doubler has cross-coupled RC networks from the collectors of Q1 and Q2 to the corresponding bases. These networks provide regenerative feedback.
The characteristics of the transformer core determine the operating frequency based on the relationship

\[f = \frac{V_{CC} \times 10^4}{4B_S AN} \text{ Hz}, \]

where \(V_{CC} \) is the input voltage, \(B_S \) is the saturated flux density in gauss, \(A \) is the cross-section area of the core in square centimeters, and \(N \) is the number of turns in half of the primary. The circuit uses the property that the collector-to-emitter voltage of each device is approximately twice the supply voltage, \(V_{CC} \), plus induced voltages, which occur because of leakage inductance. Rectification and filtration of the collector voltages of \(Q_1 \) and \(Q_2 \) through \(D_1 \) and \(D_2 \) directly provide an output voltage that is approximately double the input voltage, \(V_{CC} \).

The internal schematic of the high-voltage Darlington-array ULN2023A driver in Figure 2 exactly matches the requirements for the circuit in Figure 1 by providing rectifier diodes at the collector outputs.

The internal schematic of the high-voltage Darlington-array ULN2023A driver exactly matches the requirements of the circuit in Figure 1 by providing rectifier diodes at the collector outputs.

Table 1

<table>
<thead>
<tr>
<th>Input voltage (V)</th>
<th>Input current (mA)</th>
<th>Oscillating frequency (kHz)</th>
<th>Output voltage (V)</th>
<th>Load current (mA)</th>
<th>Power input (W)</th>
<th>Power output (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>245</td>
<td>1.79</td>
<td>7.59</td>
<td>105.95</td>
<td>1.22</td>
<td>0.8</td>
<td>65.77</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>4</td>
<td>17.68</td>
<td>104.13</td>
<td>2.5</td>
<td>1.84</td>
<td>73.72</td>
</tr>
<tr>
<td>15</td>
<td>274</td>
<td>6.06</td>
<td>27.7</td>
<td>111.7</td>
<td>4.12</td>
<td>3.09</td>
<td>75.08</td>
</tr>
<tr>
<td>20</td>
<td>280</td>
<td>8.2</td>
<td>37.9</td>
<td>110.12</td>
<td>5.6</td>
<td>4.17</td>
<td>74.53</td>
</tr>
<tr>
<td>25</td>
<td>242</td>
<td>10.53</td>
<td>48.1</td>
<td>88.23</td>
<td>6.05</td>
<td>4.24</td>
<td>70.15</td>
</tr>
<tr>
<td>30</td>
<td>205</td>
<td>13.33</td>
<td>58.7</td>
<td>66.25</td>
<td>6.15</td>
<td>3.89</td>
<td>63.23</td>
</tr>
</tbody>
</table>

Figure 2: The internal configuration of the high-voltage Darlington-array ULN2023A driver exactly matches the requirements of the circuit in Figure 1 by providing rectifier diodes at the collector outputs.

Figure 3: Taking advantage of the multiple drivers in one package, three drivers are parallel in each leg of the circuit.

Figure 4: Experimental results show the circuit in Figure 3 operating as a low-power, moderately efficient, wide-range voltage doubler.

TABLE 1 EXPERIMENTAL RESULTS
Voltage, and maximizing the permitted power dissipation. **Table 1** shows the experimental results with the voltage-doubler circuit operating over the input voltage of 5 to 30V. In that range, the input current is less than 300 mA to remain within the current values of the transformer at lower input voltages and within the power-dissipation limit of the ULN2023A at higher input voltages. **Figure 4** shows the plot of the experimental results, clearly indicating the operation of a low-power, moderately efficient, wide-range voltage doubler.

Voltage timer monitors line-connected ac loads
Michael Petersen, Maxim Integrated Products, Sunnyvale, CA

A simple circuit monitors the elapsed time over which a line-connected ac load energizes (**Figure 1**). You can then access the elapsed-time count over a standard one-wire protocol. When you energize the ac load, the optoisolator provides pulses at the ac-line frequency to the input of the one-wire counter, a DS2423 IC. Thus, the counter continuously increments whenever you energize the load. Resistors R1 and R2 limit the current, and diode D1 protects the optoisolator from reverse-polarity voltages during the negative half of the line cycle.

As an example, the circuit can monitor the duration of operating intervals for a 240V-ac well pump, thereby giving an indirect measure of the amount of water the well pumps and the approximate amount of power it consumes. The one-wire master counter—a Linux-based PC, for example—reads the elapsed count once per minute. Any change in the count from one reading to the next indicates that the pump is energized and running, and you calculate the length of time in seconds by simply taking the difference in counter values divided by the line frequency—60 Hz, in this case. The time in seconds equals the new count minus the old count divided by 60 Hz.

The circuit can monitor a water heater, a furnace, an air-conditioning unit, or any other ac-connected load. You may need to adjust the R1 and R2 values to accommodate line voltages other than 240V ac or the characteristics of other optoisolators. You can also monitor two independent loads by attaching a second optoisolator circuit to the Counter B input of a single DS2423.

Figure 1 This circuit monitors line-connected ac loads by counting one pulse per cycle when the load is energized.

Cascaded converter boosts LED-drive capability
Grant Smith, National Semiconductor, Phoenix, AZ

Powering 20 to 30 white LEDs from three alkaline cells presents an interesting problem for the conventional boost converter. The required boost ratio and duty factor are simply impractical. If you are determined to design with off-the-shelf components, cascading two stages of boost can yield reasonable results. This topology has been around for decades, but engineers often perceive it as too complicated.

There are, however, certain inherent advantages in this approach’s component requirements. The first-stage switch need not tolerate the total output voltage of the second switch, and the second switch does not have the current requirements of the first. If the duty factor were not a concern, the current/voltage requirements of a single-stage boost would require a larger, more expensive switch that might easily approach the cost of both switches in the cascaded boost. You can also realize similar advantages of the inductors, rectifiers, and filter capacitors.

This Design Idea powers 24 white or ultraviolet LEDs in series at approximately 20 mA. At a nominal 4.5V-dc input, the measured efficiency is 84.2%. This figure is reasonable for a 2 to 2.5W converter. At a 3V-dc input, the overall boost ratio for a noncascaded converter is potentially more than 30-to-1, requiring an on-time duty factor of approximately 97%. In a cascaded boost converter, this duty factor is a function of the square root of the total boost ratio. This ratio equates to...
Dual transistor improves current-sense circuit

Robert Zawislak, PE, Consultant, Palatine, IL

In multiple-output power supplies in which a single supply powers circuitry of vastly different current draws, two perplexing steps are sensing the current that each output draws and deactivating the power supply in the event of an overload on that output. These issues are especially important in protecting the fragile PCB (printed-circuit-board) traces in low-level circuits. A typical circuit would use the base-emitter threshold voltage of a single transistor to sense the current in each output. This method is simple but requires custom magnetics.

A more robust current-sense circuit features two transistors connected in a common-emitter configuration, as shown. One transistor draws current from each output and provides a voltage signal. A dual-transistor current-sense circuit improves the directional nature also helps prevent ac modes of operation, which can cause problems with stability and performance.

The current-sense input at Pin 1 is compared to a reference voltage to determine if the output is drawing too much current. For example, suppose the output is drawing more current than the maximum allowed. The signal from the current-sense input is amplified by R1 and R2, and the output is reset by the current-sense input. This circuit allows for a maximum of about 82% just before the occurrence of undervoltage shutdown. At a normal 4.5Vdc input, the duty factor should be slightly more than 77%.

The circuit in Figure 1 implements a cascaded boost converter, which takes the place of the lens assembly in a popular heavy-duty flashlight. It includes 24 white or ultraviolet LEDs on one side of the circular PCB (printed-circuit board) and the active circuitry on the other. You can substitute red LEDs for three or four of the ultraviolet LEDs to offer an appropriate visible backlight. Although you may prefer to let LEDs to offer an appropriate visible view angle. Its diode light appears in the output. These issues are especially important in protecting the fragile PCB (printed-circuit-board) traces in low-level circuits. A typical circuit would use the base-emitter threshold voltage of a single transistor to sense the current in each output. This method is simple but requires custom magnetics.

Figure 1 Comprising off-the-shelf components, this circuit cascades two stages of boost to drive a string of 20 to 30 LEDs.
age of approximately 0.6V of a bipolar transistor to trigger the power-supply-protection circuits. Although economical, the transistor’s threshold varies excessively over temperature; hence, the protection level is unstable.

The circuit in Figure 1 essentially eliminates the base-emitter-voltage temperature-variation problem as the derivation of the output voltage and as a function of the load current. By using dual bipolar devices in one case, the manufacturer nearly perfectly matches the two devices. Although this Design Idea describes a positive power supply, you can realize a similar negative-output-supply current-sense circuit using a dual NPN transistor in place of the dual PNP that the figure shows.

The following equations show the derivation of the output voltage as a function of the load current (referring to Figure 1):

\[
V_{BA} + (I_{LOAD} \times R_{SENSE}) - (I_E \times R_4) - V_{BB} = 0.
\]

\[
(V_{BA} - V_{BB}) + (I_{LOAD} \times R_{SENSE}) - (I_E \times R_4) = 0.
\]

\[
I_C + I_E = I_E.
\]

\[
(V_{BA} - V_{BB}) + (I_{LOAD} \times R_{SENSE}) - (I_C + I_E) = 0.
\]

\[
I_E = I_C/\beta.
\]

\[
V_{BA} - V_{BB} + I_{LOAD} \times R_{SENSE} - (I_C + I_E) = 0.
\]

\[
V_{BA} = V_{BB} + I_{LOAD} \times R_{SENSE} - (I_C + I_E).
\]

\[
V_{OUT} = I_C \times R_3.
\]

\[
I_E = V_{OUT} / R_3.
\]

\[
V_{BA} - V_{BB} + I_{LOAD} \times R_{SENSE} - (V_{OUT} / R_3) \times (\beta + 1) = 0.
\]

If \(V_{BA} = V_{BB} \), then \(V_{BA} - V_{BB} = 0 \), and \(I_{LOAD} \times R_{SENSE} - (V_{OUT} / R_3) \times (\beta + 1) \times R_3 = 0 \).

If \(\beta \) is high, then \(\beta / (\beta + 1) \approx 1 \), and

\[
V_{OUT} = I_{LOAD} \times R_{SENSE} \times R_3 / R_2.
\]

Figure 1 This simple two-transistor circuit provides a voltage output proportional to the current through sense resistor \(R_{SENSE} \).