Designers often use chargers with flyback topologies to quickly charge energy-storage capacitors (references 1 and 2). In a flyback topology, the energy transfer takes place only when the charger’s power MOSFET is off, which effectively isolates the power switch from the load, comprising high-energy storage-capacitor banks. Thus, the voltage levels on the circuit transformer’s secondary can vary from zero to a predetermined value and corresponding energy level without any significant stress on the components on the primary side of the transformer.

The classical flyback capacitor charger operates in CCM (continuous-conduction mode). Flat-topped, short-duration current pulses on the transformer’s secondary charge the storage capacitors (Reference 3). Unfortunately, this charging strategy requires complex control circuitry to limit both the secondary current and the capacitor voltage. Most circuits use a specialized PWM (pulse-width-modulation)-controller IC, which increases the overall cost of the charger. Another disadvantage of the CCM is the small portion of energy that accumulates during the on-time of MOSFET conduction:

$$\Delta W = \frac{1}{2} (L_p \times I_{pk}^2 - L_p \times I_{offset}^2),$$

where I_{offset} signifies the initial non-zero primary current at the beginning.
of the on-time interval.

Only this limited portion of energy transfers from the primary to the secondary sides and enters the storage capacitor. Therefore, you can considerably increase the amount of energy transferable to the capacitive load if the converter can operate in BCM (boundary-conduction mode). The secondary current becomes zero, the power MOSFET turns on, and the primary current builds from zero. Thus, a bigger portion of energy accumulates during every consecutive on-time interval:

\[\Delta W = \frac{1}{2} L_p \times I_{pk}^2 \]

With all other conditions equal, BCM operation ensures faster accumulation of a predetermined amount of energy because of the bigger stored portions of energy during the on-time intervals. Many converter circuits that operate using BCM incorporate PWM controllers that implement BCM operation for capacitor charging. These circuits often use Maxim (www.maxim-ic.com) MAX8622 or Linear Technology (www.linear.com) LT3468 ICs. These ICs are specialized devices to accommodate BCM operation.

You can, however, implement flyback BCM operation without these specialized parts. Manufacturers implement BCM in the variable-frequency versions of flyback converters, which are quasiresonant, ZVS (zero-voltage-switching) converters that commonly find use in TV SMPS (switched-mode-power supplies). For example, you can use the STMicroelectronics (www.st.com) quasiresonant-SMPS-controller L6565 to build a flyback capacitor charger working in BCM (Reference 4). Doing so eliminates the need for using a specialized chip for capacitor chargers.

Figure 1 shows the power stage of a charger using the ST L6565. It achieves the BCM using a second primary winding on T1 that feeds the transformer-sensing input at the ZCD pin of the L6565. The voltage of this winding is a scaled-down replica of the drain-to-source voltage of power MOSFET Q1. When the circuit interrupts the secondary current—indicating full demagnetization of T1—it detects the minimum of the first valley of ringing, and the L6565 turns on the MOSFET. This action eliminates the idling and zero-phase-time intervals, thus establishing BCM. The elimination of the zero-phase-time intervals greatly reduces the charging time of the storage capacitors.

At the beginning of the charging sequence, the output voltage is low because of the large capacitance values. The secondary current decreases slowly. The reflected voltage on the primary side is too low to trigger the ZCD pin of the L6565. Thus, the L6565's
The circuit in Figure 1 lets you indicate which game player presses a button first. Each button has a corresponding LED that indicates the pressing of the button. All other LEDs remain locked out until someone presses a reset button. When a player presses a pushbutton, the corresponding optoisolator turns on, which illuminates the appropriate indicator LED. The LED remains on after the player releases the pushbutton. The voltage at Point A pulls down to nearly 3.7V, which you determine by adding the forward voltage of the optoisolator’s internal LED, the phototransistor’s voltage, and the LED’s voltage: $V_{PS} = V_D + V_{LED} = 3.7V$. The green LED then turns off.

Beginning at time T_1 (Figure 2), no other player can change the situation by pressing a pushbutton because switching on any other optoisolator requires a voltage exceeding 3.9V. Resistor R_1, depends on V_{PS} such that $R_1 = \frac{V_{PS} - V_D}{I_{OPTOLED}}$, where V_{PS} is the power-supply voltage, V_D is the voltage of diode D_1, and $I_{OPTOLED}$ is the current of the optoisolator LED. Thus, for a 9V power supply, R_1 has a value of 1.5 $k\Omega$. When a player presses the reset button, the player LEDs turn off, and the green LED illuminates. The voltage at Point A returns to 9.2V (time T_2 in Figure 2).

References

First-event detector has automatic-reset function

Vasil Borodai, Zaporozhje, Ukraine

The circuit in Figure 1 lets you indicate which game player presses a button first. Each button has a corresponding LED that indicates the pressing of the button. All other LEDs remain locked out until someone presses a reset button. When a player presses a pushbutton, the corresponding optoisolator turns on, which illuminates the appropriate indicator LED. The LED remains on after the player releases the pushbutton. The voltage at Point A pulls down to nearly 3.7V, which you determine by adding the forward voltage of the optoisolator’s internal LED, the phototransistor’s voltage, and the LED’s voltage: $1.3 + 0.6 + 1.8 = 3.7V$. The green LED then turns off.

Beginning at time T_1 (Figure 2), no other player can change the situation by pressing a pushbutton because switching on any other optoisolator requires a voltage exceeding 3.9V. Resistor R_1, depends on V_{PS} such that $R_1 = \frac{V_{PS} - V_D}{I_{OPTOLED}}$, where V_{PS} is the power-supply voltage, V_D is the voltage of diode D_1, and $I_{OPTOLED}$ is the current of the optoisolator LED. Thus, for a 9V power supply, R_1 has a value of 1.5 $k\Omega$. When a player presses the reset button, the player LEDs turn off, and the green LED illuminates. The voltage at Point A returns to 9.2V (time T_2 in Figure 2).
The circuit in Figure 1 provides an isolated control voltage, such as 0 to 10V. In the low part of the range, 0V to approximately 2V, the controlled device is off. Therefore, the upper part of the range must be as linear as possible. You can meet this requirement using a linear optocoupler, such as Vishay’s (www.vishay.com) IL300 or Avago Technologies’ (www.avagotech.com) HCNR200 or HCNR201.

These optocouplers each comprise an LED and a photodiode on the transmitting side and an identical photodiode on the receiving side. Because of this construction, the emitted light from the LED should cause the same current to flow in both photodiodes. The current through the photodiode on the receiving side, feedforward current I_{FF}, is the output current, and you must set this current in proportion to the transmitted signal voltage, V_1'. This current equals the feedback current, I_{FB}, through the transmitter-side photodiode. A feedback loop around the emitting side of the optocoupler keeps the feedback current in proportion to the transmitted signal. When the feedforward current and the feedback current are equal, the output current is proportional to the transmitted signal.

The hidden cost, however, is a power supply. You need some power on both sides of the optocoupler to drive the LED and supply the photodiode on the receiving side. You can also add an auto-reset feature to the circuit. When Point A drops to 3.7V (time T_1 in Figure 3), the inputs at IC1, pins 1 and 2, go low, and the output at Pin 3 goes high, charging C_1. After about 30 seconds (time T_2 in Figure 3), C_1 has enough voltage to force IC1’s Pin 4 low. R_3 and C_1 determine the charging time. A pulse of current flows through C_1, which forces the voltage at Point A to nearly 2V. That action momentarily interrupts the current in any optoisolator LED. As a result, the circuit automatically resets, and the green LED lights. IC1’s Pin 3 goes low, which discharges C_1 through R_4, resetting the circuit to its original state.

Signal-powered linear optocoupler provides isolated control signal

Mitja Rihtarsic, Škofja Loka, Slovenia

The circuit in Figure 1 provides an isolated control voltage, such as 0 to 10V. In the low part of the range, 0V to approximately 2V, the controlled device is off. Therefore, the upper part of the range must be as linear as possible. You can meet this requirement using a linear optocoupler, such as Vishay’s (www.vishay.com) IL300 or Avago Technologies’ (www.avagotech.com) HCNR200 or HCNR201.

These optocouplers each comprise an LED and a photodiode on the transmitting side and an identical photodiode on the receiving side. Because of this construction, the emitted light from the LED should cause the same current to flow in both photodiodes. The current through the photodiode on the receiving side, feedforward current I_{FF}, is the output current, and you must set this current in proportion to the transmitted signal voltage, V_1'. This current equals the feedback current, I_{FB}, through the transmitter-side photodiode. A feedback loop around the emitting side of the optocoupler keeps the feedback current in proportion to the transmitted signal. When the feedforward current and the feedback current are equal, the output current is proportional to the transmitted signal.

The hidden cost, however, is a power supply. You need some power on both sides of the optocoupler to drive the LED and supply the photodiode on the receiving side. You can also add an auto-reset feature to the circuit. When Point A drops to 3.7V (time T_1 in Figure 3), the inputs at IC1, pins 1 and 2, go low, and the output at Pin 3 goes high, charging C_1. After about 30 seconds (time T_2 in Figure 3), C_1 has enough voltage to force IC1’s Pin 4 low. R_3 and C_1 determine the charging time. A pulse of current flows through C_1, which forces the voltage at Point A to nearly 2V. That action momentarily interrupts the current in any optoisolator LED. As a result, the circuit automatically resets, and the green LED lights. IC1’s Pin 3 goes low, which discharges C_1 through R_4, resetting the circuit to its original state.

Figure 1 Optocoupler IC1 isolates the control circuit’s input and output.
sides of the signal path. The circuit in this Design Idea uses power from signal voltage V_1 to supply a feedback loop in the transmitting side similar to the way some circuits in a 4- to 20-mA loop get power from the loop current. Both photodiodes operate in reverse-biased, photoconductive mode. The currents through them are proportional to incident-light flux, which feedback gain K_1 and forward gain K_2 describe.

When the product of feedback gain K_1 and transistor gains β_1 and β_2 is much greater than one, you can cancel out the transistors’ gains, yielding a characteristic that is linear:

$$I_{FF} = (V_1-V_{BE1}) \times \frac{1}{R_1} \times \frac{K_2}{K_1} \times \beta_1 \times \beta_2 \gg 1.$$ \hspace{1cm} (6)

The ratio of feedback gain K_1 and forward gain K_2 is transfer gain K_3. Because K_1 and K_2 are similar, K_3 is approximately one. In reality, K_3 may deviate, but it changes less than K_1 or K_2 alone:

$$K_3 = \frac{K_2}{K_1}. \hspace{1cm} (7)$$

Equation 6 subtracts the base-to-emitter voltage from the input voltage. Although the base-to-emitter voltage is not constant, it is desirable to remove it. You accomplish this task using the emitter follower in the receiving circuit. The output voltage, V_r, is a sum of voltage across R_3 and the base-to-emitter voltage of Q_r:

$$V_r = I_{FB}R_3 + V_{BE3}.$$ \hspace{1cm} (8)

You can use a different equation to yield the feedforward output current:

$$I_{FF} = \left(\frac{V_1-V_{BE1}}{R_1}\right) \times \frac{1}{R_1} \times \frac{1}{\beta_1 \beta_2} \times I_{BL}.$$ \hspace{1cm} (9)

You can rearrange equations 8 and 9 as:

$$V_2 = V_1 \frac{R_3}{R_1} K_3 + \left(\frac{V_{BE3}-V_{BE1}}{R_1}\right) K_3 + \frac{R_3}{R_1} (I_{BL} - I_{BL} K_3). \hspace{1cm} (10)$$

In the first term in Equation 10, the ratio of resistors R_3 and R_1 is approximately 1-to-1. You must be careful with the transfer gain, K_r, which is the reason that K_r remains in Equation 11.

$$V_2 = K_3 \times V_1. \hspace{1cm} (11)$$

When K_r is one, voltages V_{BE1} and V_{BE3} cancel each other to some degree. Therefore, Equation 11 omits the second term in Equation 10. Base current I_{BL} depends on resistor R_3 and the output load. When you can set both base currents to be equal, the last term would cancel out, too. The values of resistor R_3 and capacitor C_1 must be small enough so that transistors Q_1 and Q_2 don’t saturate. C_1 enhances stability.

Figure 2 shows the necessary voltage for the circuit to begin operation. The output voltage (upper trace) has flatness at its lowest voltages as opposed to the input voltage (lower trace). Figure 3 shows the two signals’ linearity. Dividing the measured maximum of voltages V_1 and V_r yields 0.91V. A test circuit uses an IL300, which has a gain of 0.851 to 0.955. The measurement meets the requirements of Equation 11 despite the equation’s simplifications.
Assume that you have a device that receives its power from the main 120 or 220V-ac line and you need to add a switch between the ac line and the device so that the device works only when it is dark. Although you may think this task would be trivial, it is difficult to find a workable approach because most of the published schematics need 6 to 12V-dc power supplies and relays. Several off-the-shelf dark-activated switches, such as devices from Suns International (www.suns-usa.com), are available, but they’re expensive for a consumer product. After looking at products from dozens of Web sites, you may decide to make your own. The solution is simple and inexpensive.

The circuit in Figure 1 employs an internally triggered triac, which Teccor Electronics (www.teccor.com) originally developed. The primary purpose of any triac is bidirectional-ac switching. The Quadrac triac has a built-in triggering device with the threshold-voltage level of approximately 40V.

To achieve this level, the circuit uses a voltage divider comprising a photocell and resistor R_1. When you light the photocell, its voltage drop is lower than the triggering level of the threshold voltage, and Q_1 is locked, so the load disconnects from the ac line. When it becomes dark, the peak voltage amplitude on the photocell increases to 40V, opening Q_1 and making the load connect to the power line.

The choice of Q_1 depends on the load current and ac-line voltage. This circuit uses the Q4004LT from Littelfuse (www.littelfuse.com) with a maximum current of 4A rms and a voltage of 400V. You can use any photocell, but this circuit uses an off-the-shelf model and accordingly uses a value of 47 kΩ for R_1 to achieve reliable switching. For an inductive load, add a 100Ω resistor in series with a 0.1-µF capacitor between pins 1 and 2 of Q_1.

Figure 1 This dark-activated switch needs only a photocell, a resistor, and a triac to switch between the ac line and the device.